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How familiar are you with wavelets?
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Wavelet Origins – First Wavelet

1909/10 - Alfréd Haar: an example of an orthonormal system for
the space of square integrable functions on [0, 1]

Images via http://wikipedia.com & http://wiki.technicalvision.ru
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Wavelet Origins – Application Based

1975 - Jean Morlet, a geophysicist, is one
of the initial developers of wavelets. His
motivation was to create a tool for oil
prospecting.

Generally, developed across multiple
disciplines including:

Robotics
Physics
Signal Processing

Image via https://wiki.seg.org/wiki/Jean_Morlet
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Wavelet Origins – Overcome Fourier Limitations

The multi-disciplinary development of wavelets was due to
limitations of the Fourier and Windowed Fourier transform in
application:
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Wavelet Origins – Fast Computing

1988/89 – Stéphane Mallat proposed the “pyramid” algorithm for
computing the discrete wavelet transform. It works in O(n)
computations – faster than FFT with O(nlog(n)).

Images via Wikipedia & ResearchGate.net
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Wavelet Origins – Wavelet Bases

1988 - Ingrid Daubechies developed wavelet bases which are
compactly supported, orthonormal, & continuous.

Images via University of Washington & Matlab
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Applications

A random smattering of wavelets in climate data
analyses...
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Yearly Mean Temperature Analysis with Wavelets

https://doi.org/10.1029/97GL01184
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Daily Station Pressure Analysis with Wavelets

https://doi.org/10.1029/2000JD900110
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Bluefin Tuna Trap Counts & Wavelets

http://www.jstor.org/stable/24872479 11 / 46
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Ancient Deep Sea Sediment Ice Volume

https://doi.org/10.1175/1520-0477(1995)076<2391:CSDUWT>2.0.CO;2 12 / 46

https://doi.org/10.1175/1520-0477(1995)076<2391:CSDUWT>2.0.CO;2


Detection of Crops in Satellite Images

https://doi.org/10.1016/j.rse.2007.05.017
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Hopefully, your interest has been piqued

1. Basic wavelet properties & theory
2. Thresholding wavelet coefficients

a. Definitions
b. Demo in R

4. Visualizing wavelet models
5. Comparison of strengths & weaknesses
6. Ice core data analysis in R
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Heisenburg Uncertainty Principle

Most generally...
it is impossible to precisely measure both the position and
momentum of a microscopic particle at the same time. The more
precisely one is measured, the less precisely the other is known.

Similar idea: Time domain information is in the raw time series,
while frequency domain information is in an orthogonal transform
of the series. We can have either temporal or spectral locality
regarding the information contained in the signal, but not precisely
both.
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Basic Set-up

Suppose that we have a series of observations of some climate
variable over time:

X(1), X(2), ..., X(t)

where X(i) denotes the observation of the variable at time i.

Example: Hourly relative humidity in Terre Haute, IN.

https://www.ncdc.noaa.gov/cdo-web/datasets/LCD/stations/WBAN:03868/detail 16 / 46

https://www.ncdc.noaa.gov/cdo-web/datasets/LCD/stations/WBAN:03868/detail


Basic Set-up

Let’s say that it is reasonable to believe that time series can be
modeled as X(t) = µ(t) + e(t)
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Basic Set-up

We can stack the observations over time into a vector for notation
ease:

X =


X(1)
X(2)

...
X(t)



Here is the model again:

X = µ+ e

18 / 46



Basic Set-up

How can we estimate µ?
Linear Model in time?
Nonlinear model in time?
Discrete fourier transform?
Discrete wavelet transformation
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Assumptions...always assumptions

Assumptions for model errors:

e(1), e(2), ..., e(t) are independent.
E(e) = 0
*V ar(e) = σ2I

*Errors come from a normal distribution

Other constraints:
*µ : [a, b]→ R with a < b ∈ R is a function satisfying∫ b

a µ
2(t)dt <∞ and µ is continuous.

*The time series is of length 2J for J ∈ Z+.
*The observations are equally spaced in time.

Pitfalls
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A step back: Continuous Wavelet Function

Wavelet: a function, ϕ ∈ L2(R), such that the translations and
dyadic dilations of ϕ,

ϕjk(x) = 2j/2ϕ(2jx− k), j, k ∈ Z

constitute an orthonormal basis of L2(R).

Visualize with the Haar wavelet basis:
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Desirable Wavelet Properties

Wavelets generate local bases.

Fourier, Hermite, Legendre are non-local. What does this mean? A
non-local basis has many of the basis functions contributing at any
given decomposition.

Daubechies’ wavelets are compactly supported to achieve the
locality. These are also orthogonal.
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Desirable Wavlet Properties

Wavelets filter time series data.

This property is similar to the Fourier transform.
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Desirable Wavelet Properties

Wavelet coefficients are de-correlated.
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Discrete Wavelet Transform (DWT)

Previous slides have hinted at the discrete wavelet transform.

Formally, the discrete wavelet transform (DWT) is

γ =WX

W is a fixed wavelet basis
γ is the vector of wavelet coefficients.

What do W and γ look like?
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Discrete Wavelet Matrix

W is an orthonormal basis
W with W ′W =WW ′ = I

W has the multiresolution property
Invariant under shifts of integer multiples of 2k.
The lth and kth subspaces, k > l are time-scaled versions of
eachother with dilation factor 2k−l

Let’s look at a couple W matrices. If you don’t have R on your
laptop (or are following on a smaller device) and would like to run
the code: https://rdrr.io/snippets/

These slides, R code, and example data are all available in my
website: https://meganheyman.github.io/
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Wavelet Coefficients

The W matrix helps highlight the ‘level’ structure present in the
wavelet coefficients.

Incorporates ideas of time and frequency together.
Index (j, k) is kth place in the jth level

For a time series of length 2J :

γ =



γ0
γ0,0
γ1,0
γ1,1

...
γJ−1,2J−1−1


.

Larger wavelet coefficients (similar to Fourier coefficients) imply
more signal at the particular time-scale.

(wavethresh coefficients example)
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Wavelet Model

Thus, we have motivated the idea that, given a time series X, we
can use the DWT to approximate the signal component.

X = µ+ e
≈ W ′γ + e

However, there is still an issue.

The full DWT leaves no room to estimate error.
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Thresholding Coefficients

Consider an ‘observed’ time series and its wavelet coefficients
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Thresholding Coefficients

Wavelet coefficients tend to be sparse.

One way to take advantage of this is to ‘threshold’ coefficients
which are small enough down to 0. The remaining coefficients
estimate signal & there are also degrees of freedom to estimate
error.

Wavelet thresholding in the statistical literature includes:
Hard thresholding (Donoho and Johnstone, 1994)
Soft thresholding (Donoho and Johnstone, 1994)
Block thresholding (Hall et al., 1999)
... tons more of small variations
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Thresholding (from stackexchange.com)
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Thresholding Example

Let’s give thresholding a try with a couple of examples...
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Visualizing Wavelet Model Results

Plot Individual Coefficient Values: plot(wavObj$D).
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Visualizing Wavelet Model Results

Plot ‘energy’ in coefficients, by level:

levels <- seq(0, J-1)
CoefSum <- rep(NA, J)
for(i in 1:length(levels)){

CoefSum[i] <- mean(accessD(wavObj, level=levels[i])ˆ2)
}
plot(levels, CoefSum)
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Visualizing Wavelet Model Results

Plot thresholded inverse DWT & original observations
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Beyond this short course

Wavelets in 2D

Statistical properties of wavelet coefficient estimates: γ̂j,k.

Choice of wavelet family and filter

Mallat’s pyramid/cascade algorithm.
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Pitfalls of Wavelets in Statistical Modeling

Signal-To-Noise Ratio
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Pitfalls of Wavelets in Statistical Modeling

Assumptions/Constraints Assumptions

Digging through the existing literature

Threshold choice
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Analyzing Ice Core Data https://icecores.org/icecores
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Vostok Ice Core Chronology

Images via Wikipedia

This particular chronology includes 1637 observations of ice age,
gas age, LIDIE for depths up to 3272 m.
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What is LIDIE?

LIDIE = lock-in depth in ice equivalent

Image via https://mindynicewonger.weebly.com/blog/how-ice-cores-are-dated
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Deep Ice Core LIDIE

The Vostok Ice Core Chronology provided on my website was obtained on
2017-12-30 from https://www.ncdc.noaa.gov/paleo-search/study/15076

42 / 46

https://www.ncdc.noaa.gov/paleo-search/study/15076


Pop Quiz

Learning Objectives

Everyone who attended should be able to explain
Why to choose wavelets for climate data analysis?
What are desirable properties of wavelets?
What are weaknesses of wavelets in practice?
What are basic mechanics behind a discrete wavelet
transform?
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Research Areas with Wavelet Applications

Finding and quantifying relationships between multiple climate
time series.

Extensions of wavelet methodology into 2D (and beyond) for
applications in climate time series.

Properties of wavelet coefficients & estimated model with weaker
assumptions.

Model selection (choice of threshold, wavelet family & filter)
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References for Getting Started with Wavelets

These are a couple of the references that I found helpful when
starting to learn about wavelets.

Ogden, R.T. “Essential Wavelets for Statistical Applications and
Data Analysis.” Birkhauser. 1997.

Vidakovic, B. “Statistical Modeling by Wavelets.” Wiley Series in
Probability and Statistics. 1999.

Nason, G. “Wavelet Methods in Statistics with R.” Springer. 2008.
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Thank you!

Contact information:

Megan Heyman
heyman@rose-hulman.edu

https://meganheyman.github.io/
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