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How familiar are you with wavelets?
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Wavelet Origins — First Wavelet

1909/10 - Alfréd Haar: an example of an orthonormal system for
the space of square integrable functions on [0, 1]

Images via http://wikipedia.com & http://wiki.technicalvision.ru
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Wavelet Origins — Application Based

1975 - Jean Morlet, a geophysicist, is one
of the initial developers of wavelets. His
motivation was to create a tool for oil
prospecting.

Generally, developed across multiple
disciplines including:
m Robotics

m Physics

m Signal Processing

Image via https://wiki.seg.org/wiki/Jean_Morlet
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Wavelet Origins — Overcome Fourier Limitations

The multi-disciplinary development of wavelets was due to
limitations of the Fourier and Windowed Fourier transform in

application:
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Wavelet Origins — Fast Computing

1988/89 — Stéphane Mallat proposed the “pyramid” algorithm for
computing the discrete wavelet transform. It works in O(n)
computations — faster than FFT with O(nlog(n)).

Scsle 1

L(n

L(n

Images via Wikipedia & ResearchGate.net
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Wavelet Origins — Wavelet Bases

1988 - Ingrid Daubechies developed wavelet bases which are
compactly supported, orthonormal, & continuous.

A B B 4 B

db2 db3 db4 dbs dbé
db7 dbs dbg dbi0

Images via University of Washington & Matlab
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Applications

A random smattering of wavelets in climate data
analyses...
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Yearly Mean Temperature Analysis h Wavelets

BALIUNAS ET AL.: WAVELET ANALYSIS OF CENTRAL ENGLAND TEMPERATURE 1353
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Figure 3. The yearly mean CET and the trend calculated as the difference between the observed data and
wavelet reconstruction (based on results adopting Mexican hat wavelet) using the range of time scale between 2
< a € Gmar With amaz = 200 yr (1), 120 yr (2), and 40 yr (3).
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Daily Station Pressure Analysis with Wavelets

WHITCHER ET AL.: WAVELET ANALYSIS OF COVARIANCE
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Figure 4. MODWT coefficients for the Truk Island SP series using the LA(8) wavelet filter.

The wavelet coefficient vectors W. . W;, . .Wm are associated with variations on scales of
1,2,...,1024 days, and the scaling coefficient vector Vg is associated with variations of 2048 days
or longer
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Bluefin Tuna Trap Counts & Wavelets

White noise
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Fig. 4. Wavelet speetra of the Formiea and Portoscuso tim ed with
different null hypotheses. We used a white noise process, an AR[1] process, the
Fourier surrogates (Type 1) and our class of surrogates (Beta surrogates). Solid
black lines indicate significant areas at the The colour gradient, from
dark blue to dark red, codes for low to high power values. Curved dashed lines:
limit of the cone of influence, the area where edge effects are present
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Ancient Deep Sea Sediment Ice Volume

6130 (0/00)

Frequency(octave)
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Fic. 6. (a) Time series for deep sea §'*Oat site 807 in the North Atlantic record for the past 2.5 Myr and (b) real part of its Morlet wavelet
transform. Black dot-dashed lines in (b) indicate the 1requency evolution of the dominant periodicities.
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Detection of Crops in Satellite Images

2001
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Hopefully, your interest has been piqued

1. Basic wavelet properties & theory
2. Thresholding wavelet coefficients

a. Definitions
b. Demo in R

4. Visualizing wavelet models
5. Comparison of strengths & weaknesses

6. lce core data analysis in R
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Heisenburg Uncertainty Principle

Most generally...

it is impossible to precisely measure both the position and
momentum of a microscopic particle at the same time. The more
precisely one is measured, the less precisely the other is known.

Similar idea: Time domain information is in the raw time series,
while frequency domain information is in an orthogonal transform
of the series. We can have either temporal or spectral locality
regarding the information contained in the signal, but not precisely
both.

t t t
basis d(t — tx) basis ™! wavelet basis
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Suppose that we have a series of observations of some climate
variable over time:

X(1),X(2), .. X (1)
where X (i) denotes the observation of the variable at time 1.

Example: Hourly relative humidity in Terre Haute, IN.

Hourly Relative Humidity in Terre Haute, Dec. 2008 - Jan. 2009
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Let's say that it is reasonable to believe that time series can be
modeled as X (¢) = u(t) + e(t)

Signal with Changing Frequency
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We can stack the observations over time into a vector for notation

ease:
X(1)
% _ X:(2)
X(1)

Here is the model again:
X=p+e
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Observed Signal
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Observation

How can we estimate p?
m Linear Model in time?
m Nonlinear model in time?
m Discrete fourier transform?
m Discrete wavelet transformation
ROSE-HULMAN
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Assumptions...always assumptions

Assumptions for model errors:
e(1),e(2),...,e(t) are independent.
E(e)=0

*Var(e) = 0?1

*Errors come from a normal distribution

Other constraints:
® *u: [a,b] - R with a < b € R is a function satisfying
[P u2(t)dt < oo and p is continuous.
m *The time series is of length 27 for J € Z+.

m *The observations are equally spaced in time.
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A step back: Continuous Wavelet Function

Wavelet: a function, ¢ € L2(R), such that the translations and
dyadic dilations of ¢,

pjr(x) =202 — k), j kel

constitute an orthonormal basis of L2(R).

Visualize with the Haar wavelet basis:

| |
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Desirable Wavelet Properties

Wavelets generate local bases.

Fourier, Hermite, Legendre are non-local. What does this mean? A
non-local basis has many of the basis functions contributing at any
given decomposition.

Daubechies’ wavelets are compactly supported to achieve the
locality. These are also orthogonal.

db2 db3 db4 db5 dbé
db7 dbs dbg dbi0o
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Desirable Wavlet Properties

Wavelets filter time series data.

This property is similar to the Fourier transform.
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Desirable Wavelet Properties

Wavelet coefficients are de-correlated.

ACF for AR(1) with correlation 0.9
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Discrete Wavelet Transform (DWT)

Previous slides have hinted at the discrete wavelet transform.

Formally, the discrete wavelet transform (DWT) is

¥y=WX

m )V is a fixed wavelet basis

m -y is the vector of wavelet coefficients.

What do W and ~ look like?
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Discrete Wavelet Matrix

W is an orthonormal basis
B W with WW=WW' =T

W has the multiresolution property
m Invariant under shifts of integer multiples of 2%

m The I and k" subspaces, k > [ are time-scaled versions of
eachother with dilation factor 25~

Let's look at a couple YW matrices. If you don't have R on your
laptop (or are following on a smaller device) and would like to run
the code: https://rdrr.io/snippets/

These slides, R code, and example data are all available in my
website: https://meganheyman.github.io/
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Wavelet Coefficients

The W matrix helps highlight the ‘level structure present in the
wavelet coefficients.

m Incorporates ideas of time and frequency together.

m Index (4, k) is k' place in the j™ level

For a time series of length 27:

Y0
70,0
71,0
7= 7,1

YJ-1,27-1-1
Larger wavelet coefficients (similar to Fourier coefficients) imply
more signal at the particular time-scale.

ROSE-HULMAN (wavethresh coefficients example)
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Wavelet Model

Thus, we have motivated the idea that, given a time series X, we
can use the DWT to approximate the signal component.

X=p+e
~Wn~+e

However, there is still an issue.

The full DWT leaves no room to estimate error.
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Thresholding Coefficients

Consider an ‘observed’ time series and its wavelet coefficients

Wavelet Coefficients
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Thresholding Coefficients

Wavelet coefficients tend to be sparse.

One way to take advantage of this is to ‘threshold’ coefficients
which are small enough down to 0. The remaining coefficients

estimate signal & there are also degrees of freedom to estimate
error.

Wavelet thresholding in the statistical literature includes:
m Hard thresholding (Donoho and Johnstone, 1994)
m Soft thresholding (Donoho and Johnstone, 1994)
m Block thresholding (Hall et al., 1999)

m ... tons more of small variations
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Thresholding (from stackexchange.com)

For a given threshold A (that can be dependent on resolution level), and value of wavelet coefficient
d, hard thresholding is defined as:

0, for|d <X
DH dIx) = g =
(d12) {d, for |d] > A
whereas soft thresholding is governed by following equation:

0, for [d] < A
DS(dA) =< d—A, ford>A
d+ A, ford<-—A

Figure below depicts both cases:

(a) Hard-thresholding (b) Soft-thresholding

The soft thresholding is also called wavelet shrinkage, as values for both positive and negative

coefficients are being "shrinked" towards zero, in contrary to hard thresholding which either keeps
ROSE‘HULMAN or removes values of coefficients
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Thresholding Example

Let's give thresholding a try with a couple of examples...
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Visualizing Wavelet Model Results

Plot Individual Coefficient Values: plot (wavObj$D).

Wavelet Decomposition Coefficients

Resolution Level

T T T T T
0 128 256 384 512

Translate
Standard transform Daub cmpct on least asymm N=10
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Visualizing Wavelet Model Results

Plot ‘energy’ in coefficients, by level:

levels <- seq(0, J-1)
CoefSum <- rep(NA, J)
for(i in 1:length(levels)){
CoefSum[i] <- mean(accessD(wavObj, level=levels[i])"2)
}
plot(levels, CoefSum)

Wavelet Filtering

Energy (coef. mean square)

Level
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Visualizing Wavelet Model Results

Plot thresholded inverse DWT & original observations

Soft Thresholding vs. Observed Relative Humidity
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Beyond this short course

Wavelets in 2D

Statistical properties of wavelet coefficient estimates: 4; .

Choice of wavelet family and filter

Y e
e S

Mallat's pyramid/cascade algorithm.
ROSE-HULMAN
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Pitfalls of Wavelets in Statistical Modeling

Signal-To-Noise Ratio

Hard Thresholding vs. True Signal (small error variance)

Y3
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Pitfalls of Wavelets in Statistical Modeling

m Assumptions/Constraints
m Digging through the existing literature

m Threshold choice
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Analyzing Ice Core Data https://icecores.org/icecores

Glaciers form as layers of snow accumulate on top of each other. Each layer of snow is different
in chemistry and texture, summer snow differing from winter snow. Over time, the buried snow
compresses under the weight of the snow above it, forming ice. Particulates and dissolved
chemicals that were captured by the falling snow become a part of the ice, as do bubbles of
trapped air. Layers of ice accumulate over seasons and years, creating a record of the climate
conditions at the time of formation, including snow accumulation, local temperature, the
chemical composition of the atmosphere including greenhouse gas concentrations, volcanic
activity, and solar activity.

The dark band in this ice core fram the West Antarctic Ice Sheet Divide (WAIS Divide) is a layer of volcanic ash that

ROSE‘HULMAN settled on the ice sheet approximately 21,000 years ago
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Vostok Ice Core Chronology

o Vostok y
Station 74+
p

27 -
3 Location of Vostok Station in Antarctica
i Pl Coordinates: (g 78°27'50"S 106°50'15"E

Images via Wikipedia

This particular chronology includes 1637 observations of ice age,
gas age, LIDIE for depths up to 3272 m.
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What is LIDIE?

LIDIE = lock-in depth in
Depth
Surface —_—

01m —

10-25m —

Firn

60-110m —

Ice with

180m —

Image via https
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://mindynicewonger.weebly.com/blog/how-ice-cores-are-dated
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Deep Ice Core LIDIE

Deepest LIDIE in Vostok Ice Core Chronology
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The Vostok Ice Core Chronology provided on my website was obtained on
2017-12-30 from https://www.ncdc.noaa.gov/paleo-search/study/15076
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Learning Objectives

Everyone who attended should be able to explain
m Why to choose wavelets for climate data analysis?
m What are desirable properties of wavelets?
m What are weaknesses of wavelets in practice?

m What are basic mechanics behind a discrete wavelet
transform?
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Research Areas with Wavelet Applications

Finding and quantifying relationships between multiple climate
time series.

Extensions of wavelet methodology into 2D (and beyond) for
applications in climate time series.

Properties of wavelet coefficients & estimated model with weaker
assumptions.

Model selection (choice of threshold, wavelet family & filter)
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References for Getting Started with Wavelets

These are a couple of the references that | found helpful when
starting to learn about wavelets.

Ogden, R.T. “Essential Wavelets for Statistical Applications and
Data Analysis.” Birkhauser. 1997.

Vidakovic, B. “Statistical Modeling by Wavelets.” Wiley Series in
Probability and Statistics. 1999.

Nason, G. “Wavelet Methods in Statistics with R.” Springer. 2008.

ROSE-HULMAN

INSTITUTE OF TECHNOLOGY
45 /46



Thank youl!

Contact information:

Megan Heyman
heyman@rose-hulman.edu

https://meganheyman.github.io/
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